Astronomie en générale

RETROUVEZ L'ASTRONOMIE EN GENERAL

 

Les éphémérides de 2017

  • Combien d'étoiles peut-on voir à l'œil nu ?

     

    Lorsque l'on tourne les yeux vers le ciel, la nuit, on a parfois l'impression d'y voir, à l'œil nu, une quantité innombrable d'étoiles. Pas si innombrable que cela, en réalité...

    Les bons logiciels d'astronomie amateur recensent dans notre ciel environ 10.000 étoiles dites « visibles à l'œil nu ». Mais les estimations du nombre d'étoiles que l'on peut distinguer, depuis chacun des hémisphères de notre planète et sans utiliser d'instrument, tournent plutôt autour de 3.000.

    Et si la réponse à cette question n'est pas si évidente, c'est qu'elle dépend en fait de bien des paramètres.

    L’œil, un instrument performant

    Il faut tout d'abord savoir que, même si la sensibilité de l'œil humain est assez extraordinaire, celui-ci présente tout de même certaines limites physiologiques. Il n'est ainsi pas capable de distinguer un flux de moins de 50 photons par seconde. Ceci correspond approximativement au flux reçu au fond de l'œil par une étoile de magnitude 6. Bien sûr, ces valeurs varient d'un individu à un autre, en fonction de la qualité de sa vue.

    VOIR AUSSI :Combien y a-t-il d’étoiles dans la Voie lactée ?

    Les conditions d’observation des étoiles

    Certains observateurs prétendent pouvoir voir à l'œil nu des étoiles dont la magnitude descend jusqu'à 7,5. Mais, pour cela, il est indispensable de regarder le ciel dans des conditions optimales. Car les perturbations atmosphériques et la pollution lumineuse, notamment, influent négativement sur notre capacité à distinguer plus d'étoiles dans le ciel.

    Un nombre infime d'étoiles visibles à l'œil nu

    Ainsi, même dans des conditions d'observation idéales, nous ne pouvons voir à l'œil nu qu'une fraction infime des quelque 200 milliards d'étoiles que contient notre galaxie, la Voie lactée. Et ne parlons même pas des 1023 étoiles qui sont censées peupler notre univers !

    Des astronomes amateurs participent à l'aventure spatiale  Les astronomes amateurs sont nombreux et de mieux en mieux équipés. C’est pourquoi, les agences spatiales font de plus en plus appel à eux pour de l’observation ou des travaux de mesures, comme on peut le voir durant cette vidéo du Cnes. 

    Vous avez aimé cet article ? N'hésitez pas à le partager avec vos ami(e)s et aidez-nous à faire connaître Astro Photo Météo 53 :) ! La Rédaction vous remercie.

  • Que veut dire le mot Zodiaque ?

     

    Le zodiaque est une zone de la sphère céleste parallèle à l'écliptique dans laquelle se situe le mouvement apparent du Soleil.

    Un observateur sur Terre voit le Soleil, les planètes et la Lune se déplacer dans la bande du zodiaque car tous semblent bouger dans le même plan de l'écliptique. La bande du zodiaque s'étend environ à 8° de latitude de part et d'autre du plan de l'écliptique.

    Étymologiquement, le terme « zodiaque » vient d'un mot grec qui signifie « cercle des petits animaux », car les constellations du zodiaque sont souvent des animaux (bélier, poissonslion...).

    Différences entre le zodiaque en astronomie et en astrologie

    L'écliptique traverse treize constellations. En astrologie, le zodiaque est toutefois divisé en douze zones de 30° associées aux douze signes du zodiaque : Bélier, Taureau, Gémeaux, Cancer, Lion, Vierge, Balance, Scorpion, Sagittaire, Capricorne, Verseau et Poissons. Pour les astrologues qui rédigent des horoscopes, une personne née lorsque le Soleil apparaît dans une constellation donnée (par exemple, celle du Bélier entre le 21 mars et le 20 avril) sera de ce signe astrologique. À cause du phénomène de précession des équinoxes, il existe aujourd'hui environ un mois de décalage entre le signe du zodiaque d'une période donnée et la constellation où s'observe le Soleil.

    Du point de vue astronomique, le Soleil traverse une treizième constellation située entre le Scorpion et le Sagittaire : le serpentaire (Ophiuchus). Le zodiaque au sens des astronomes n'est donc pas le même que celui des astrologues.

    La Terre de nuit filmée en timelapse par Thomas Pesquet  Dans cette vidéo en accéléré filmée par Thomas Pesquet, on file de l’Europe du nord à l’Asie centrale. Toute cette partie du Globe était alors plongée dans la nuit. Les villes brillent plus que les étoiles, dont on reconnaît les constellations, en arrière-plan au-dessus de la lueur verdâtre de l’atmosphère terrestre. 

    Vous avez aimé cet article ? N'hésitez pas à le partager avec vos ami(e)s et aidez-nous à faire connaître Futura :) ! La Rédaction vous remercie.

  • Pourquoi ne sent-on pas que la Terre tourne ?

     

    On ne le sent pas mais pourtant la Terre tourne sur elle-même. Ainsi, un point situé à l'équateur parcourt quelque 1.670 km par heure !

    Nous ne sentons pas la Terre tourner mais cela n'empêche pas les objets situés à sa surface de trahir son mouvement. En effet, la rotation de la Terre est responsable d'une force de Coriolis qui dévie les mouvements inertiels vers la droite dans l'hémisphère nord et vers la gauche dans l'hémisphère sud. C'est ainsi que, grâce à un pendule suspendu à la voûte du Panthéon, Léon Foucault a fait la démonstration de la rotation de la Terre en 1851.

    La rotation de la Terre, un mouvement uniforme

    La vitesse de rotation de la Terre est certes relativement élevée. L'important reste toutefois que cette vitesse soit constante. Le mouvement de rotation de la Terre est uniforme, ce qui ne donne lieu à aucune sensation particulière. Installez-vous dans un train. Lorsque celui-ci circule à sa vitesse de croisière, on ne sent rien, même s'il s'agit du TGV. Seuls les accélérations et les freinages peuvent être physiquement ressentis. En effet, dans ces moments-là, des forces nous attirent vers notre siège ou nous en repoussent.

    Les effets de la force centrifuge

    Pour suivre le mouvement circulaire de la Terre, il faut bien qu'une force s'applique sur le corps. À défaut, le principe d'inertie nous ferait nous déplacer en ligne droite. La force en question est celle de la pesanteur, laquelle se décompose en deux termes :

    • la force de gravitation (responsable d'une accélération de 9,8 m/s2) qui résulte de la masse de la Terre et qui nous attire vers son centre ;
    • la force centrifuge (responsable d'une accélération d'environ 0,02 m/s2) qui résulte de la rotation de la Terre et qui a tendance à nous en éjecter.

    Pour ressentir la rotation de la Terre, il faudrait que l'effet centrifuge soit plus fort que la gravité.

    Lire la suite

  • Comment une boussole indique-t-elle le pôle nord magnétique ?

     

    On sait qu'une boussole indique le pôle nord magnétique. Mais de quoi s'agit-il exactement ? Découvrez comment une boussole indique le pôle nord magnétique.

    On parle de nord magnétique mais il s'agit en fait du pôle sud de l'aimant constitué par la Terre. Ce repère particulier ne se trouve pas précisément sur le pôle Nord géographique, défini comme le point de contact entre l'axe de rotation de la Terre et la surface de la planète.

    En réalité, il est en perpétuel mouvement (il se déplace quelques années de 55 kilomètres). Il se trouve désormais au nord du Canada et semble se diriger vers la Sibérie.

    Le magnétisme terrestre provient du noyau externe

    La position de ce point dépend des mouvements du noyau externe de la planète (à plus de 3.000 kilomètres sous la surface) composé à 85 % par du fer en fusion. Grâce aux propriétés conductrices du métal, des petits courants électriques vont alors se former. Ce magma mobile agit donc à peu près comme une bobine géante et engendre le champ magnétique de la Terre, la dotant d'un pôle nord et d'un pôle sud magnétiques.

    Nous ne ressentons pas consciemment ce champ magnétique, mais les aimants sont capables de les détecter (ainsi que certains animaux : c'est la magnétoréception). Une boussole, ce n'est rien d'autre qu'un aimant très léger et mobile qui ne subit que peu de forces de frottement, ce qui lui permet de s'aligner sur le champ magnétique terrestre. Ainsi, comme les opposés s'attirent, le pôle nord de la boussole s'oriente vers le pôle sud de l'aimant généré par la Terre, ce que nous qualifions de pôle nord magnétique.

     

     

    5 phénomènes magnétiques étonnants  Les champs magnétiques sont invisibles et pourtant ils sont à l’œuvre dans notre quotidien. Ferrofluide, supraconductivité ou encore accélérateur de particules, Futura-Sciences a réuni pour vous cinq phénomènes étonnants qui utilisent les forces magnétiques. 

    Vous avez aimé cet article ? N'hésitez pas à le partager avec vos ami(e)s et aidez-nous à faire connaître Astro Photo Météo 53 :) ! La Rédaction vous remercie

  • La vie sur Terre est-elle vraiment apparue dans les océans ?

     

    La vie a peut-être fait son apparition dans des sources hydrothermales mais étaient-elles océaniques ou terrestres ? Une découverte en Australie relance le débat : des structures pourraient avoir été formées par des micro-organismes dans des sources chaudes sur un continent il y a 3,48 milliards d'années.

    CE QU'IL FAUT RETENIR

    Les traces probables les plus anciennes de la vie ont été trouvées dans des roches formées par des sources hydrothermales dans les océans de l'Archéen.
    On vient d'en trouver de nouvelles dans des roches australiennes qui se sont formées à une époque comparable mais qui se sont déposées au bord de geysers, sur les terres émergées, il y a 3,48 milliards d'années ce qui serait un record dans ce cas précis.
    La vie n'est peut-être pas née dans les océans mais sur les continents. Cependant, il reste du travail pour confirmer cette hypothèse.
    Dans une lettre adressée à son ami, le grand botaniste et explorateur britannique Joseph Dalton Hooker, Darwin évoque brièvement en 1871 un lieu et un scénario possibles pour l'origine de la vie en ces termes : « Quelque petite mare chaude, en présence de toutes sortes de sels d'ammoniacet d'acide phosphorique, de lumière, de chaleur, d'électricité, etc. », où « un composé de protéinefut chimiquement formé, prêt à subir des changements encore plus complexes ».

    Au siècle suivant, dans les années 1920 le biochimiste russe Alexander Oparine et le biologiste anglais John Burton Haldane vont reprendre l'hypothèse de Darwin en remplaçant sa petite mare chaude par les mers et les océans de la Terre primitive, enrichis en molécules prébiotiques par des réactions au sein de l'atmosphère initiale de la Terre, supposée différente de celle d'aujourd'hui.

    Le tout jeune chimiste Stanley Miller va les prendre au sérieux. Afin de tester ce qui a été finalement appelée la théorie de la soupe chaude primitive, il réalisa donc sa fameuse expérience en reconstituant un mélange des gaz que l'on supposait présents dans l'atmosphère de la Terre primitive et en les soumettant à des décharges électriques, comme ceux des orages, ainsi qu'à un rayonnement UV similaire à celui du jeune Soleil. Tout récemment, un nouvel avatar de l'expérience de Miller, simulant l'effet des impacts d'astéroïdes, a même permis de produire les fameuses bases azotées de l'ARN.

     

    Les sources chaudes non loin du volcan Taupo en Nouvelle-Zélande donnent peut-être un aperçu des conditions qui ont permis à la vie d'apparaître sur Terre, voire sur Mars. © Andrew Burton

    Des petites mares chaudes de Darwin archéennes en Australie ?

    Toutefois, depuis quelques décennies, les exobiologistes ont favorisé un scénario bien spécifique. Il fait intervenir les sources hydrothermales au fond des océans (d'autres font intervenir des pierres ponces ou des volcans de boue). Les travaux de biologie moléculaire favorisent en particulier ce scénario. Mais toutes les explications imaginées restent hypothétiques. L'environnement et le chimisme de la Terre primitive étaient certainement différents de ceux que l'on peut observer aujourd'hui.

    Tout récemment, une équipe d'exobiologistes australiens menée par Tara Djokic de l'University of New South Wales a publié un article dans Nature Communications suggérant que Darwin pourrait bien avoir été plus proche de la vérité qu'on ne le pensait. Les plus anciennes traces de vie les plus convaincantes (car il y a encore débat) proviennent d'environnements marins au début de l'Archéen, c'est-à-dire il y a entre 4 et 3,5 milliards d'années environ. Mais il s'agit peut-être d'un biais dû au fait que l'on a surtout trouvé des roches en provenance de ce genre de milieu. C'est en tout cas une des raisons qui laissent penser que la vie est née dans les océans et qu'elle a ensuite lentement mais sûrement gagné les continent.

    Mais, selon Djokic et ses collègues Martin Van Kranendonk, Malcolm Walter, Colin Ward et Kathleen, les roches qu'ils ont trouvées au nord-ouest de l'Australie, sur les fameux sites du désertde Pilbara, suggèrent que la vie existait bel et bien sur les continents dès cette époque. Ces organismes auraient barboté dans des sources chaudes d'eau douce comparables à celles de la zone volcanique de Taupo, une région volcanique assez active de l'île du nord de la Nouvelle-Zélande, ou encore dans celles d'El Tatio, au Chili.

     

     

     


    Les roches où se cachent peut-être les plus anciennes traces de vie sur les continents émergés. Elles se trouvent à Pilbara en Australie. © Kathy Campbell, University of New South Wales 

    Des structures fossilisées ressemblant aux tapis microbiens

    Les chercheurs ont en effet fait plusieurs découvertes dans les roches du Craton de Pilbara, âgées de 3,48 milliards d'années et présentes dans les archives géologiques de la formation Dresser. Il s'agissait clairement de dépôts de geysérite, une forme de silice amorphe hydratée constituant une roche qui se dépose, comme son nom l'indique, au bord des geysers. Elle se trouve, par exemple, associée à l'eau des systèmes hydrothermaux de Yellowstone, le plus souvent saturée en dioxyde de silicium. Lorsque ces eaux siliceuses se refroidissent, la solubilité de cette silice diminue et elle précipite en donnant la geysérite.

    Or, ces dépôts sont associés à des stromatolites qui, de nos jours, sont le produit de l'activité des cyanobactéries. Surtout, les exobiologistes ont identifié des structures similaires à celles des tapis microbiens, à savoir des bulles de gaz engluées dans ces tapis et qui peuvent ensuite former des structures fossilisées dans la geysérite.

    Si les chercheurs ont raison, la découverte est d'importance car elle apporte de l'eau au moulin de ceux qui pensent que la vie n'a en fait pas pu naître dans les sources hydrothermales océaniques. Sur les continents, les structures et les composants prébiotiques des cellules pouvaient plus facilement se concentrer dans les petites mares entourant les geysers, du fait de leur évaporation à répétition à l'air libre, augmentant du coup les chances que ces composants s'assemblent en structures plus complexes.

    Il y a donc peut-être de bonnes chances de trouver des formes de vie fossilisées dans les systèmes hydrothermaux similaires à ceux d'El Tatio. Or, ils semblent avoir existé sur Mars dans la région des collines Columbia. Une raison de plus d'envoyer des rovers sur place dans les années 2020.

     

    Mission ExoMars : en quête de vie sur la Planète rouge  La mission ExoMars est parmi les plus ambitieuses jamais entreprises sur la Planète rouge. Elle a pour but d'y rechercher des traces de vies passées ou présentes. L'ESA nous offre en vidéo un avant-goût de cette mission qui s’avère passionnante. 

    Vous avez aimé cet article ? N'hésitez pas à le partager avec vos ami(e)s et aidez-nous à faire connaître Astro Photo Météo 53 :) ! La Rédaction vous remercie.

  • Quelle est la taille de l'univers ?

    Pour l'établir, revenons sur ce que nous savons.

    Lire la suite

  • Naissance de l'espace-temps

    Relativité restreinte et naissance de l'espace-temps

    Lire la suite

  • Comment reconnaître une météorite ?

     

    Vous pensez qu'une météorite est tombée dans votre jardin ou dans un champ près de chez vous ? qu'une pierre trouvée sur votre chemin vient de l'espace ? Voici quelques astuces qui vous permettront d'identifier une météorite.

    Selon les estimations, environ 4.400 météorites de plus d'un kilogramme atteignent le sol terrestre chaque année. Une grande partie d'entre elles ont coulé au fond des océans, lesquels représentent plus de 70 % de la surface terrestre. Néanmoins, cela ne suffit pas à décourager les chasseurs de ces fragments d'astéroïdes, morceaux de Lune - et même de Mars pour les plus rares - échoués sur notre planète.

    Pour maximiser les chances de découvrir ces pépites, le plus simple est de sillonner des surfaces relativement uniformes, couvertes, par exemple, de neige ou de sable. Il s'agit notamment des déserts chauds ou glacés comme les vastes étendues blanches de l'Antarctique. En effet, dans ces milieux peu peuplés, les seules pierres que l'on puisse cueillir sur le sol sont celles qui sont tombées du ciel.

    Enfin, si en vous promenant, une pierre sur votre chemin aiguise votre curiosité ou encore si vous êtes témoin d'un évènement météoritique et que vous vous lancez à la recherche d'un fragment qui aurait touché le sol, voici quelques indications qui vous permettront d'éliminer les fausses pistes.

    Lire la suite

  • Pourquoi la planète Mars est-elle rouge ?

    Dans le ciel, la planète Mars apparaît comme un astre rouge. Une couleur qu'elle doit à son sol composé essentiellement d'oxyde de fer.

    Interview : pourquoi la Nasa n'envoie-t-elle personne sur Mars ?  La prochaine étape de la conquête spatiale est indubitablement Mars. Néanmoins, le voyage est constamment repoussé depuis plusieurs années par la Nasa. Futura-Sciences a interviewé Charles Frankel, planétologue, afin qu’il nous explique pour quelles raisons. 

    Mars est l'une des cinq planètes visibles à l’œil nu. Ainsi, dans l'Antiquité déjà, les Romains avaient constaté dans le ciel la couleur rouge si particulière de la quatrième planète du Système solaire. Traduisant sa couleur comme le résultat du sang versé sur d'immenses champs de bataille, ils ont choisi de lui donner le nom de leur dieu de la guerre.

    Une planète rouge comme la rouille

    Aujourd'hui, nous savons qu'aucune guerre sanglante n'a eu lieu sur le sol de la Planète rouge. Si Mars nous apparaît ainsi teintée, c'est que son sol est assez largement composé d'oxyde de fer. De la rouille, en quelque sorte.

    En effet, il y a plus de 3 milliards d'années, alors qu'elle n'était pas rouge du tout, la planète aurait rencontré un évènement solaire lui ayant littéralement soufflé son atmosphère. Particulièrement ténue, celle-ci aurait alors lentement oxydé un sol martien riche en fer.

    Mars est plus rougeâtre que rouge

    En réalité, la planète Mars n'a pas une couleur rouge sang, comme l'avait imaginé nos lointains ancêtres, mais plutôt rougeâtre, avec des nuances de brun et d'orange.

    Une couleur qui est tantôt accentuée par les tempêtes qui secouent la planète, soulevant des nuages de sables rougeâtres, tantôt atténuée lorsque les conditions météorologiques sont calmes.

    •  
    •  
    •  
    •  

    Le télescope spatial Hubble offre ici deux vues de la Planète rouge. On y découvre Mars avant et pendant la grande tempête de poussières de l’été 2001. © Nasa, Wikipedia, DP

     

     

    Lire la suite

  • Comment utiliser un télescope

    Articles en 3 parties:

    Les télescopes sont des instruments d’optique qui permettent d’admirer le ciel étoilé en augmentant la luminosité et la taille apparente des objets à observer. Il est pratiquement impossible de décrire l’excitation que procure l’observation des corps célestes, comme les galaxies éloignées, les amas d’étoiles brillantes, les nébuleuses flamboyantes, les planètes du système solaire et la Lune.

    Lire la suite

  • LES SAISONS SUR LES AUTRES PLANÈTES DU SYSTÈME SOLAIRE

    LES SAISONS SUR LES AUTRES PLANÈTES DU SYSTÈME SOLAIRE

       


     

    Y'a-t-il un été sur Vénus? Combien de temps dure l'hiver sur Neptune? Nous sommes accoutumés sur Terre à ces successions de changements climatiques, avec les variations notables de la durée d'ensoleillement, des températures, de la météorologie, que sont les saisons. La Terre est-elle, comme sur de nombreuses caractéristiques, une exception, ou existe-t-il également des saisons, des modifications régulières chroniques du climat, sur les autres planètes du système solaire?

    Lire la suite

  • Les différents types de galaxies

    Les différents types de galaxies

    Lire la suite

  • La surface du Soleil, les taches et le magnétisme

    La surface du Soleil, les taches et le magnétisme

    Lire la suite

  • Les aurores boréales

    Les différentes caractéristiques des aurores

    Lire la suite

  • Le Soleil

    Le Soleil

    Lire la suite

  • L’espace-temps autour d’un trou noir

    L’espace-temps autour d’un trou noir

    Lire la suite

  • Notre Voie Lactée en détailles

    LES PREMIERES ETUDES DE LA VOIE LACTEE

     

    La partie la plus fascinante du ciel nocturne est une bande blanchâtre et diffuse qui traverse la voûte céleste : la Voie Lactée. En utilisant sa lunette au XVIIe siècle, Galilée fut le premier astronome à comprendre que cette dernière est en fait constituée d’une myriade d’étoiles qui se concentrent dans une région du ciel en forme de bande. La concentration est telle que l’oeil humain ne peut plus discerner les étoiles les unes des autres et ne voit qu’une bande diffuse.

    Milky Way

    Un spectacle fabuleux dans la voûte céleste : la Voie Lactée. Crédit : W.-H. Wang

    La forme de la Voie Lactée et le fait qu’elle semble encercler la Terre suggérèrent aux astronomes, en particulier à l’Anglais Thomas Wright au milieu du XVIIe siècle, que le Soleil et les autres étoiles devaient former un système très aplati. Au XVIIIe siècle, le philosophe allemand Emmanuel Kant avança l’idée que la Voie Lactée était un système d’étoiles en forme de disque. En regardant dans la direction du disque, on apercevait un immense nombre d’étoiles qui se confondaient pour donner une impression de bande diffuse. Dans la direction perpendiculaire, par contre, on ne voyait que quelques étoiles proches et rien au-delà, ce qui donnait cette impression relative de vide.

    Les premières analyses de la Voie Lactée

    Les premières tentatives pour aller plus loin furent couronnées d’un succès limité. Dans les années 1780, William Herschel, le découvreur d’Uranus, se lança dans la première analyse quantitative de la structure de la Voie Lactée. Il divisa la voûte céleste en une multitude de régions et compta le nombre d’étoiles visibles dans chacune de ces régions. Ceci devait lui permettre de reconstituer la forme de la Voie Lactée dans l’espace et de déterminer la position du Soleil par rapport à l’ensemble.

    Les observations d’Herschel semblèrent montrer que la distribution du nombre d’étoiles dans la Voie Lactée était plus ou moins uniforme et il en conclut que le Soleil se trouvait au centre du disque. Plus tard, au début du XXe siècle, le Néerlandais Jacobus Kapteyn, réalisa une analyse plus poussée et arriva au même résultat. Il s’essaya même à déterminer la taille de la Voie Lactée, qu’il estima à 40.000 années-lumière.

    William Herschel

    William Herschel : Hannover, 1738 – Slough, 1822

    La Voie Lactée cachée par le milieu interstellaire

    Nous savons aujourd’hui que les deux astronomes se trompèrent dans leurs conclusions car ils ne tinrent pas compte de l’effet du milieu interstellaire. Or, celui-ci diffuse la lumière des étoiles. Ainsi, à partir d’une certaine distance, le rayonnement d’une étoile est tellement affaibli que nous ne pouvons plus le détecter. En conséquence, nous ne pouvons observer qu’une petite fraction des étoiles de la Voie Lactée, celles qui sont suffisamment proches. Peu importe la position du Soleil, au centre ou pas, Herschel et Kapteyn allaient trouver une distribution uniforme d’étoiles car ils ne pouvaient observer que le voisinage du Soleil.

    Heureusement pour notre connaissance de l’Univers, le milieu interstellaire n’obscurcit pas la lumière toutes les directions. Le gaz et les poussières interstellaires se trouvent concentrés dans le plan de la Voie Lactée comme les étoiles. L’extinction interstellaire est très faible dans les autres directions, ce qui nous permet malgré tout d’observer des objets plus lointains. C’est grâce à cela que les astronomes purent finalement déterminer la forme réelle et la taille de la Voie Lactée, ainsi que la place du Soleil dans l’ensemble.

    Lire la suite

  • Les amas d’étoiles

    Un amas d’étoiles est un regroupement d’étoiles visible dans le ciel. Dès le premier regard, on distingue deux types d’amas :

    •  les amas ouverts, contenant un petit nombre d’étoiles -de quelques dizaines à quelques milliers- assez régulièrement espacées. Les amas ouverts ne présentent pas de structure apparente, et leur couleur générale est bleue.
    •  les amas globulaires, qui rassemblent un très grand nombre d’étoiles -de quelques dizaines de milliers à quelques millions- et qui montrent une forme sphérique évidente. Comme leur nom l’indique, ils présentent un aspect globuleux, avec une concentration d’étoiles si forte vers le centre que leurs images se confondent. Leur couleur générale est rouge.

    Cette différence visuelle n’est pas la seule, loin de là. Tout d’abord, leur localisation est différente :

    •  Les amas ouverts se trouvent dans le disque de la Galaxie, mélangés aux étoiles ;
    •  Les amas globulaires sont situés dans un immense halo sphérique, qui entoure le disque de la Galaxie.

     

    La répartition donnée dans le schéma ci-dessus est précisée par une cartographie de ces amas :

    Amas ouverts

    Le dessin ci-dessus montre l’emplacement des amas ouverts par rapport aux étoiles de notre Galaxie, le trait horizontal représentant le plan de celle-ci, le nord étant en haut. On remarque que tous les amas ouverts se trouvent dans une étroite bande autour du plan galactique. Or nous savons que tout le gaz contenu dans la Galaxie se trouve justement dans ce plan. Il y a donc là la matière nécessaire pour former de nouvelles étoiles.

    Amas globulaires

    Contrairement aux amas ouverts, les amas globulaires se concentrent avec une répartition sphérique. Leur système possède un centre, qui correspond à celui de la Galaxie. C’est en observant l’ensemble de ces amas d’ailleurs que Harlow Shapley a déterminé pour la première fois le centre galactique, et montré que le Soleil en était assez loin.

    Amas ouverts

    Commençons par indiquer les plus beaux amas ouverts visibles dans l’hémisphère nord. Le plus connu, le plus beau, est celui des Pléiades. Il se trouve dans le Taureau, visible donc à l’automne (observation), et ressemble grossièrement à une Grande Ourse miniature.

     
    Amas ouvert des Pléiades M45 lunette 155 mm pose 1 h 10 mn photo J.P. Bousquet

    A l’œil nu, on distingue une dizaine d’étoiles bleutées. Mais l’amas en comporte quelques 400 visibles dans un télescope. C’est un amas jeune, qui affiche quelques 30 millions d’années seulement. Il est né dans un vaste nuage d’hydrogène, d’hélium et de poussières, qui est encore visible autour des étoiles brillantes, sous la forme d’une nébuleuse par réflexion de couleur bleue. Les Pléiades se trouvent à une centaine de parsecs de la Terre.

    Le second amas à observer est celui des Hyades, qui se trouve tout proche des Pléiades. C’est le V du Taureau, dont la pointe est Aldébaran, mais attention, cette dernière n’appartient pas à l’amas. Il est nettement moins riche que les Pléiades, car il ne contient qu’une centaine d’étoiles. Il est aussi nettement plus proche, à 45 parsecs (alors qu’Aldébaran est à 15 parsecs). Les étoiles des Hyades ont une forte métallicité, plus forte que celle du Soleil. Ceci nous indique qu’elles sont très jeunes. Tous les types spectraux y sont représentés.

    Le troisième amas remarquable est celui de la Crèche (dans le Cancer), encore nommé M44, ou Præsepe. Il contient 200 étoiles dont 4 géantes rouges seulement (amas jeune), son âge est de 200 millions d’années, sa distance de 165 pcs.

    Enfin, citons NGC 188, car c’est un exemple de vieil amas : son âge atteint 10 milliards d’années.

    Au-delà de 3.000 pcs, on ne distingue plus les amas ouverts des autres étoiles de la Galaxie.

    On observe dans la Galaxie quelques centaines d’amas ouverts.

    Les étoiles se forment rarement isolément. Les étoiles simples sont rares, les doubles fréquentes. Les étoiles se forment très souvent à partir de très gros nuages, qui se fragmentent en s’effondrant, et donnent naissance à de nombreuses étoiles en même temps. Ce sont les amas ouverts. Au début, les étoiles d’un amas ouvert sont très proches les unes des autres, et elles se déplacent à peu près dans le même mouvement. Cependant, de très faibles fluctuations initiales suffisent pour qu’au cours du temps l’amas ouvert se disloque, les étoiles s’éloignant les unes des autres. Ainsi, la durée de vie d’un amas ouvert est brève. De ce fait, on comprend pourquoi ils contiennent tant d’étoiles bleues jeunes, puisque lorsque ces étoiles vieillissent l’amas se disperse, et se dilue dans le milieu ambiant.

    Age des amas ouverts

    Comme les exemples ci-dessus le donnent à penser, les amas ouverts sont très souvent jeunes. Ce qui signifie que leurs étoiles se sont formées il y a peu de temps, et donc que la matière nécessaire était disponible. Puisqu’ils sont localisés dans le plan de la Galaxie, où se trouve beaucoup de gaz, ceci s’explique. De nouveaux amas peuvent donc se former encore actuellement, dans un gaz enrichi en métaux par les explosions de supernovæ qui se sont produites depuis la formation de la Galaxie. Plus un amas est jeune, plus ses étoiles contiendront donc de métaux.

    Le graphique ci-dessous montre le pourcentage des amas ouverts observés en fonction de l’âge. On y constate que la moitié ont moins de 200 millions d’années, et que moins de 1 % atteignent les 2 milliards d’années. La jeunesse des amas ouverts s’explique sans doute par les conditions de leur formation : toutes leurs étoiles naissent à peu près en même temps d’un immense nuage de gaz et poussières. Ce nuage possède une vitesse d’ensemble dans la Galaxie, et les étoiles qui en naissent possèdent donc également cette vitesse d’ensemble. Mais certaines sont légèrement plus proches du centre attractif de la Galaxie, et subissent donc une attraction un petit peu plus forte. Cette légère différence effiloche l’amas, les étoiles s’éloignent tout doucement les unes des autres. Un amas se dissoud en un temps de l’ordre du milliard d’années (correspondant à 4 tours de la Galaxie).

    Les amas ouverts sont constitués d’étoiles de population I, comprenant des géantes bleues et des Céphéides.

    La présence de ces géantes bleues jeunes et très brillantes (types spectraux O, B et A) donne aux amas ouverts une coloration d’ensemble bleutée. Bien que les étoiles moins massives et moins chaudes, donc rouges, y soient présentes en grand nombre, leur faible masse leur confère une luminosité beaucoup plus faible, et leur éclat est masqué par celui des géantes bleues.

    Diagramme HR

    La jeunesse des amas ouverts explique que, dans la plupart, le diagramme HR montre la Séquence Principale au complet. En effet, toutes les étoiles se formant ensemble apparaissent sur la Séquence Principale et commencent à brûler leur hydrogène. Les plus massives évoluent le plus vite, et quittent la séquence principale les premières pour grimper dans la branche des géantes. Mais dans les amas très jeunes (la plupart) elle n’en ont pas eu le temps.

    Associations

    On nomme association de petits amas ouverts, dont la population est trop faible pour mériter le nom d’amas. Les associations naissent ensemble dans des nébuleuses, et sont souvent variables. Pour cette raison, elles sont présentées dans le chapitre relatif aux variables nébulaires.

    Amas globulaires

    L’explication de la nette différence entre les amas ouverts et les amas globulaires tient dans le moment de formation de ces deux types d’amas. Les amas globulaires sont vieux, ils sont consitutés presque exclusivement de vieilles étoiles, géantes évoluées rouges, naines blanches et étoiles à neutrons, alors que les amas ouverts sont formés d’étoiles bleues très jeunes. Dans les amas globulaires, il n’y a plus de gaz, donc plus de matière pour former de nouvelles étoiles, et ce depuis longtemps. Par contre, dans le plan de la Voie Lactée, on trouve beaucoup de gaz, et de nouvelles étoiles peuvent s’y former, tout spécialement dans les bras spiraux.

    Lorsque les amas globulaires se sont formés, dans les premiers temps de la Galaxie, le nuage de gaz et de poussières qui a donné naissance à l’ensemble n’avait pas encore pris sa forme de disque aplati. Il était pratiquement sphérique, de faible densité, et les condensations qui allaient donner naissance aux amas globulaires tournaient autour du centre sur des orbites quelconques. La faible densité du milieu ne freinait pas leur mouvement. Du gaz de ces condensations sont nées les étoiles qui constituent les amas globulaires.

    Plus tard, en se condensant, le nuage est devenu de plus en plus dense, et les collisions entre particules de plus en plus fréquentes. Lors d’une collision, il y a échange d’énergie, entraînant la chute vers le centre et provoquant l’aplatissement du nuage. Petit à petit, le système s’est transformé en disque, et les orbites des particules sont devenues des cercles inscrits dans le plan galactique. A partir de ce disque de gaz, des étoiles se sont formées forcément dans le plan de la Galaxie, et leurs orbites sont pratiquement des cercles (quoique ce soit un peu plus compliqué que cela).

    Les amas globulaires, du fait de leur âge, sont constitués d’étoiles de populations II (vieilles). Nous verrons qu’il n’y a pas eu de renouvellement des générations. Leur métallicité est faible (elles se sont formées dans un gaz non encore enrichi).

    Les amas globulaires ont un très grand intérêt pour plusieurs raisons :

    •  ils ont servi à déterminer le centre de la Galaxie,
    •  ils servent d’indicateurs de distance.

    En effet, on constate qu’ils ont tous à peu près la même luminosité, donc la même magnitude absolue. Connaissant celle des amas les plus proches, et l’extrapolant à un amas lointain, la détermination de sa magnitude apparente permet d’estimer sa distance.


    Amas globulaire M3, lunette 155 mm pose 1 h 45 mn photo J.P. Bousquet

    Dans l’hémisphère nord, l’amas M13 (NGC 6205) offre un très beau spectacle l’été dans la constellation d’Hercules. Il présente un diamètre de 30 pcs, regroupe un peu moins d’un million d’étoiles, et se situe à une distance de 21.000 AL. C’est l’un des plus beaux objets célestes visibles des régions boréales.

    Mais le plus beau de tous est ω du Centaure (NGC 5139), qui se trouve dans l’hémisphère sud. Il semble contenir une dizaine de millions d’étoiles, est situé à 15.000 AL, et mesure 150 AL en diamètre.

    L’hémisphère sud est d’ailleurs favorisé, puisqu’il abrite aussi 47 Tucanæ (NGC 104), le deuxième amas globulaire par l’éclat. 47 Tuc est situé à un peu plus de 13.400 AL, et son diamètre atteint 120 AL.

    Orbite d’un amas globulaire

    L’orbite d’un amas globulaire est une orbite képlérienne autour du centre galactique, et très allongée. Le centre galactique occupe l’un des foyers de l’orbite. Comme pour les planètes autour du Soleil, l’amas va très vite lorsqu’il est près du centre attractif, et beaucoup moins lorsqu’il en est loin. Dans son mouvement, il reste donc peu de temps proche du centre, et beaucoup plus lorsqu’il en est loin. Il n’est donc pas étonnant de voir les amas globulaires en majorité loin du centre. On peut penser aussi que les amas globulaires, qui sont provisoirement dans le centre, sont noyés dans la poussière interstellaire et ne sont donc pas visibles.

    Les amas globulaires orbitent autour du bulbe de la Galaxie, ils ne le traversent pas. La zone dans laquelle ils passent, le disque, contient assez peu d’étoiles pour qu’ils puissent traverser sans domages pour les étoiles. Par contre, le gaz que devaient contenir les amas globulaires après leur formation heurte violemment celui du disque de la Galaxie, y produisant une onde de choc. En quelques passages, l’amas globulaire va être dépouillé de son gaz.

    Les amas effectuent un tour complet autour du centre galactique, en un temps de l’ordre de 100 millions d’années. Leurs passages dans le disque se produisent donc avec une fréquence caractéristique de 50 millions d’années.

    Détermination de l’âge d’un amas

    Rapidement après leur formation, les amas globulaires ont donc perdu leur gaz, et ne peuvent plus former de nouvelles étoiles. Ceci explique bien que toutes les étoiles de l’amas aient pratiquement le même âge. Formées à la naissance de la Galaxie, elles vieillissent de plus en plus et, chacune à son tour (selon sa masse), quittent la Séquence Principale.

    Si un amas a, par exemple, 1,5 milliards d’années, toutes les étoiles dont la durée de vie est inférieure à 1,5 milliards d’années ont déjà quitté la Séquence Principale :

     

    Les nombres à gauche sont les masses des étoiles, en masses solaires. Les traits horizontaux représentent la durée de vie de ces étoiles (sur la Séquence Principale). L’origine des coordonnées a été placée au moment de la formation de l’amas. Cette origine correspond au début de la Séquence Principale pour toutes ces étoiles. Au bout de 1,5 milliards d’années, toutes les étoiles de masse supérieure à 2,2 M ont disparu.

    Comment s’en apercevoir ?

    La façon la plus simple est de construire le diagramme HR des étoiles de l’amas. Si l’amas est assez important, toutes les catégories spectrales seront représentées, et le diagramme sera significatif. Considérons un amas âgé de 1,5 milliards d’années, comme dans l’exemple ci-dessus. Il ne contient plus que des étoiles de types spectraux correspondant à des masses inférieures à 2,2 M. Par conséquent, sa Séquence Principale ne sera pas complète, mais amputée de sa partie gauche, correspondant aux étoiles de grandes masses, et de durée de vie plus brève.

    Les étoiles un peu plus massives sont en train de monter le long de la branche des géantes, les plus massives encore l’ont déjà quittée, et sont arrivées dans la branche des naines blanches (ou transformées en étoiles à neutrons, non visibles sur le diagramme HR). Le diagramme HR a donc un aspect caractéristique, et le coude de la courbe indique l’âge de l’amas :

    D’autre part, les étoiles massives qui ont quitté la Séquence Principale sont devenues des géantes rouges, plus ou moins évoluées. On devrait donc trouver la branche des géantes.

    Dans ce schéma, on voit la partie de la Séquence Principale restante, et le départ de la branche des géantes. Le coude de la courbe indique les propriétés (température effective et luminosité) des étoiles dont la durée de vie correspond exactement à l’âge de l’amas. Si on prend la luminosité de ces étoiles sur le schéma, on mesure à peu près 15 fois la luminosité du Soleil. Comme la luminosité croît avec la puissance 3,5 de la masse, ceci nous donne une masse de 2,2 masses solaires. En reprenant la formule qui donne la durée de vie, on obtient V = 10 / M2,5 = 1,4 milliards d’années. C’est l’ordre de grandeur de l’âge de l’amas.

    Lorsque les étoiles quittent la Séquence Principale, elles ont consommé quelques 7/100 de leur masse : en effet, les réactions de fusion de l’hydrogène donnent une perte de masse (transformée en énergie) de 0,7 %. Le nombre indiqué est obtenu en supposant que toute la masse d’hydrogène de départ est transformée en hélium. Ce n’est vrai que pour les petites étoiles totalement convectives (M < 0,26 M). Pour les autres, la proportion sera un peu plus faible, mais l’ordre de grandeur est correct.

    Animation montrant l’âge des amas

    Cette animation est destinée à visualiser comment on calcule l’âge d’un amas ouvert. Il correspond au schéma commenté plus haut. Le temps d’évolution d’une étoile n’y est pas conforme à la réalité : les plus petites ont une durée de vie bien trop longue pour les représenter fidèlement dans l’animation.

     

    Cliquez sur le bouton "créer" pour créer un amas ouvert. Vous verrez apparaître simultanément une étoile de chaque type spectral, qui se trouvera sur la Séquence Principale.

    Ces étoiles vont commencer leur vie en brûlant leur hydrogène. Les plus massives (en haut à gauche) sont prodigues, et le brûlent très vite. La plus massive représentée, de type spectral O, quitte la Séquence Principale la première. Elle emprunte la branche des géantes, pour se transformer en géante rouge. Ensuite, l’étoile de type spectral B va la suivre. Et ainsi de suite, chacune à son tour quittant la Séquence Principale pour devenir géante.

    Le bouton vous permet de stopper momentanément l’animation. Utilisez-le lorsque les 4 premières étoiles auront quitté la Séquence Principale. Toutes ces étoiles ont le même âge. Vous constaterez alors qu’il ne reste plus que les moins massives sur la Séquence Principale, et que la branche des géantes rouge est occupée. On obtient le diagramme en V dessiné plus haut.

    Si on observe un amas ouvert, dont le diagramme HR a cet aspect-là, on pourra en déduire que toutes les étoiles qui ont quitté la Séquence Principale ont atteint l’âge au bout duquel leur hydrogène est brûlé. Puisque toutes les étoiles ont le même âge, c’est aussi l’âge de l’amas.

    Les étoiles massives, en évoluant, laissent des étoiles à neutrons ou des naines blanches. Or les amas globulaires en contiennent beaucoup. D’ailleurs, la masse moyenne des étoiles dans les amas globulaires est de l’ordre de 0,4 M.

    Le fait qu’on observe de nombreux amas ouverts présentant aussi un coude dans leur diagramme HR, justifie la théorie qui prédit l’âge des étoiles.

    Stabilité d’un amas globulaire

    Les amas globulaires existent depuis des milliards d’années, la troncature de la Séquence Principale le prouve. De plus, ils ont une densité très supérieure à celle du disque de la galaxie. Comment les interactions gravitationnelles entre leurs étoiles n’ont-elles pas, depuis longtemps, provoqué soit leur rupture, soit leur effondrement ?

    L’explication est assez récente. Elle tient dans la répartition de l’énergie (cinétique et potentielle) entre les étoiles de l’amas.

    Lorsque 3 étoiles passent à proximité, on montre que l’une d’entre elles perd de l’énergie au profit d’une autre. Alors, celle qui a perdu de l’énergie peut se mettre en orbite autour de la troisième, alors que celle qui en a gagné est éjectée au loin. De telles rencontres à trois sont assez fréquentes du fait de la densité, et la formation des couples stellaires aussi. On s’attend donc à observer davantage de couples à l’intérieur d’un amas globulaire que dans le disque de la galaxie.

    Traînardes bleues

    On donne ce joli nom à quelques étoiles bleues, chaudes et massives, qui apparaissent dans le diagramme HR des amas globulaires. Ces étoiles ne devraient pas exister ! Et pour les expliquer, on a invoqué des captures d’étoiles provenant du disque de la galaxie. Elles se seraient donc formées dans une région riche en gaz, puis auraient migré vers l’amas globulaire par un mécanisme d’interaction gravitationnelle.

    Mais ce mécanisme n’a plus de raisons d’être. En effet, la présence de nombreux couples d’étoiles dans les amas globulaires nous fournit une explication bien plus plausible : 1 + 1 = 1 grosse !

    Cette équation se traduit de deux façons différentes :

    •  l’un des membres du couple termine sa Séquence Principale, et devient une géante rouge. La présence de l’autre étoile produit des lobes de Roche, que l’enveloppe de l’étoile enflée va remplir. Et sa matière se déverse sur l’autre, dont la masse augmente. Les changements qui se produisent dans son équilibre convectif peuvent brasser la matière pour incorporer de l’hydrogène dans le cœur, et relancer les réactions de fusion. Une telle étoile ressemble assez à une étoile normale, et sa masse est plus élevée que celle des autres dans l’amas.
    •  les deux étoiles se raprrochent l’une de l’autre, au grès des perturbations, et finissent pas entrer en collision. L’objet ainsi produit est violemment brassé, et sa masse est la somme des masses des deux étoiles protagoniste. On obtient là encore une étoile bleue assez massive.

     

    Binaires X

    Observer un couple stellaire n’est en général pas facile, car les distances angulaires sont faibles. On ne les sépare qu’à faible distance. Et si la densité d’étoiles est élevée, comme dans un amas globulaire, il devient impossible de distinguer des étoiles qui se trouveraient en perspective.

    Mais, alors que les étoiles simples n’émettent pratiquement pas dans le domaine X, de nombreux couples le font, par échange de matière. Il est plus facile de détecter les couples ainsi.

     

     

      amas ouverts amas globulaires
    nombre d’étoiles qq centaines à qq milliers qq dizaines de milliers à qq millions
    localisation dans le disque de la Galaxie dans le halo
    âge étoiles jeunes étoiles vieilles (âge de la Galaxie, 12 milliards d’années)
    population I II géantes rouges, naines blanches
    couleur bleue rouge
    diamètre 30 parsecs 8 à 120 parsecs
    aspect système lache forte concentration centrale
    distance < 3.000 parsecs 3.000 à 60.000 parsecs
    métallicité > métallicité solaire < métallicité solaire
    stabilité < 1 milliard d’années plusieurs dizaines de milliards d’années

     

    La relation Teff - Masse n’est valable que pour les étoiles de la Séquence Principale !

    Lire la suite

×